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,’:'1.1 L Abstract

An analytical and experimental investigation of the effects of large
prebuckling deformation on the buckling of thin-walled, clamped, cylindrical
shells subjected to combinations of axial loading and internal pressure, has
been carried out. These large deformations are caused by edge conditions at
the ends of the shells.

Imperfection free test specimens have been provided by the centrifugal
casting of a birefringent eppoxy resin compound. A carefully executed test
program permitted achievement of a one-to-one correspondence between the
theoretical and experimental models. The existence of the prebuckling
deformations has been demonstrated by means of the photoelastic (photostress)
technique. A "two-step" perturbation technique has been used to arrive at
the differential equations governing the shell buckling and a solution has
been achieved by means of the Galerkin method and application of the IBM 7074
computer.

The role of the nonuniform deformation, in reducing the buckling loads
from that predicted by classical linear theory, has been demonstrated by
experiment. Good agreement between analysis and experiment has been encountered
for shells of limited range of shell lengths.

The inadequacy of the classical membrane model to describe such shells

at the incipience of buckling is verified.
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Preface

The objective of this work has been to demonstrate both analytically
and experimentally the effect of large nonuniform prebuckling deformations
on the buckling of clamped thin-walled, cylindrical shells subjected to
combinations of axial compressive loading and internal pressure. These
prebuckling deformations arise due to the clamped conditions imposed at
the edges of the shells.

The urgent need for such an investigation resulted from recent ana-

[15] [16]

lytical research work carried out in this field by Stein and Fischer.
They investigated the effects of large prebuckling deformations on the
buckling loads of simply supported cylindrical shells. Stein reported
reductions of up to 55Z from the buckling loads predicted by classical linear
(17]

theory. Fischer reported reductions of not more than 15%. Koiter pointed
out that the difference in their findings was probably due in part to the
fact that Stein studied the case of vanishing tangential shear at the edges,
while Fischer studied the case of vanishing tangential displacement. He
also pointed out that Stein's edge conditions did not correspond to those
used in the classical linear theory.

It thereby became apparent, that the ultimate answer to the question
regarding the role of prebuckling deformations in reducing the buckling loads
of thin cylinders would have to be sought in careful experiment. Coupled with

this experimental work, an analysis would have to be carried out which provided

a one~to-one correspondence with the experiment.
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The test specimens have been prepared from a birefringent eppoxy resin
compound by means of the centrifugal casting technique. Shells have been
found to be virtually free of initial geometrical imperfections and the
isolation of the effects of the prebuckling deformations in reducing buck-
ling loads from that predicted by classical linear theory has therefore
been made possible. Shells have been tested with raties of radius to
thickness varying from 133 to 200, and ratios of length to radius from
0.75 to 4.3. The existence of the prebuckling deformations has been
demonstrated by means of the photoelastic (photostress) technique.

The nonlinear Donnell equilibrium equations have been used in the
analysis. A solution for the prebuckling problem has been achieved and
a "two-step" perturbation technique has been used to arrive at the dif-
ferential equations governing the shell buckling.

The buckling equations have been solved by means of the Galerkin method
and with the aid of an IBM 7074 digital computer.

Results of both the experimental and analytical work have been presented
in graphical form and these findings have been discussed at some length.

This work has been sponsored by the National Aeronautics and Space
Administration, Grant NsG-627.

It has also been supported in part by the National Science Foundation

Grant GP-137.
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INTRODUCTION

The mathematical foundations of the theory of elastic stability were

first laid down by Euler. On the basis of this theory Timoshenko[l]

computed
the buckling loads for thin cylindrical shells subjected to axial loading.

Choosing a suitable coordinate system to specify the shell initial con-
figuration, he equated to zero the resultants of the longitudinal, tangential,
and radial forces acting on a differential element of the shell. Using Hook's
law to relate stresses with strains, and the linearized strain displacement
relationships, he arrived at three simultaneous linear homogeneous differential
equations of equilibrium relating the shell displacements, end loading, shell
structural properties and geometry.

It was assumed that on buckling the shell generators and circumference

take on a sinusoidal configuration. The small longitudinal, tangential, and

radial displacements were assumed to be of the form (Fig. 3)

*
- ny mrx
u A sin R cos -?:-
v*=BcosELsinPyBE
R L
*
= ny nmx
w C sin R sin I

with the origin of coordinates taken at one end of the shell. These displacements
required that the shell generators divide into m half waves, and the circum-
ference into n full waves. Substituting these expressions for the displacements

into the differential equations of equilibrium he arrived at a set of three



simultaneous algebraic linear homogeneous equations for the quantities

A, B, and C. To compute the buckling load it was required that a non-trivial
solution exist for these quantities, i.e., that the determinant of their
coefficient matrix be equal to zero. This put a relationship between the
shell loading and the integers n, and m. It was then shown that the lowest
value of the loading which could satisfy the constraining relationship, with

permissible values of m and n was as follows:

2
p = —Et

Er3ED

where PE is known as the Euler buckling load per unit circumference along

the edge of the shell.

In the case of columns and plates, very good agreement has been found
between predictions based on theory and experimental results, however, in
the case of thin walled cylindrical shells subjected to axial compressive

loading, large discrepancies have been encountered. In experiments carried

[2] [3]

out by Donnell and others it was found that these shells buckled under

loads of only a fraction of that predicted by theory (Fig. 1).
(2] [4]

Donnell , and later Donnell and Wan s tried to explain this dis-

crepancy on the existence of geometric imperfections as well as residual

(5] attempted to explain it by

stresses in the test specimens. Flﬁgge
attributing it to the restraint to radial movement of the shells which was
provided by the testing machine or supporting edge plates. Both were able

to explain a certain amount of reduction in the critical buckling load, how-




ever, they could not account for the fact that the configuration of the
buckled test shell was much different from that predict=d by theory.

The reason why thin cylindrical shells do not behave in a manner
similar to flat plates when they buckle was investigated by von Karman and
Tsien{6]. They showed that on buckling, thin shells can undergo lateral
deformations of the order of several wall thicknesses. The relationships
which then connect the displacements with the stresses are highly nonlinear.
A nonlinear large deflection theory must therefore be used instsad of the

[2]

linear one. The nonlinear theory was laid down by Donnell ,» and von
K4drmidn and Tsien employed it to determine the possible equilibrium con-
figurations of a thin cylindrical shell under axial loading. A deformation
form of the type observed in buckled shells was assumed and the Rayleigh-
Ritz method was used to obtain a solution.

Von Kirmin and Tsien found that there existed other equilibrium
configurations in addition to the unbuckled configuration, for loads lower
than the Euler critical load (Fig. 2). These other configurations were
associated with large deflections in the cylinder walls. While this approach
did not indicate that shells must buckle at loads lower than the Euler load
it did show that small external disturbances could readily cause shells to
"jump" from an unbuckled to a nearby bu;Lled configuration before the Euler
load had been reached.

A valuable contribution to the understanding of why experimentally
observed large displacement buckling is possible with thin cylindrical

[7]

shells was made by Yoshimura . He used differential geometry to show



that a circular cylindrical shell could be transformed into a set of plane
triangles. This transformation required bending of the shell wall. The
work of bending of a thin shell wall is relatively small compared to that

of membrane compression or extension. This explained the ability of the
walls to undergo large displacements due to bending. In contrast, flat
plates with edges supported against lateral displacements cannot be deformed
to a large deflection buckled configuration without large membrane strains
occurring and hence much additional work being supplied by the applied load.
The ability of plates to carry increased loads after buckling without
undergoing large deformation is thus explained.

In reviewing the extensive literature available on the subject of
buckling of thin cylindrical shells it is surprising to find that so little
attention has been devoted to investigating the effects of edge conditions
on the buckling loads. An explanation, perhaps, may be found in the experi-

[2]

mental results obtained by earlier writers. In many cases it has been
assumed that a shell whose length is greater than three quarters of its
diameter may be considered as a shell of infinite length in so far as edge
effects are concerned. In other cases the edges are considered to be sup-
ported in some way during buckling but prebuckling deformation is either
neglected or considered to be uniform throughout and prebuckling bending
stresses are assumed to have no effect on the buckling load. These assump-

tions, convenient though they may be from the viewpoint of the analysis,

have been seriously challenged by more recent researchers in this field.




Thielmann[B]

has criticized the assumption of von Karman and Tsien,

and of later researcﬁers, that buckles are distributed periodically over

the entire length of the buckled shell and that shell length has no influence
on buckling loads. This assumption has been made in spite of the fact that
in experimental tests local buckles are observed. In more recent works by

1 10l
1, and Evan-Iwanowski“O‘ the phenomena of localized buckling has

fo
Uemyra™
been introduced.

In reviewing papers in connection with experimental work carried out

[2]

by Donnell one findé the following statement with regard to edge con-
ditions, "In all the experiments cited in this paper the ends of the
cylinders were clamped or fixed in some way. This stabilized the wall

of the cylinder near the ends to such an extent that buckling always
started at some distance from the ends. When cylinders are tested free
ended, eccentricity of loading and other local conditions at the ends are

[11] it has been claimed

likely to obtain." 1In a recent report by Tennyson
that imperfection free cylindrical shells can be made to buckle arbitrarily

close to the classical buckling load, with limiting factors being the degree
[12]

of precision and care used in testing. Leonard has completely disagreed
with this claim., The following is a quotation from his remarks on the
matter, "The author is completely disregarding an important source of

error in the classical theory which is entirely unrelated to initial shape

imperfections: the inconsistent assumption made in classical theory regard-

ing edge conditions.”




A solution to the linearized axisymmetric prebuckling deformation

problem for a shell with simply supported edges has been provided by FBppl[13]

[41 [15]

and is presented by Fliigge Stein computed the solution for the non-

linear problem of prebuckling deformations of simply supported cylindrical
shells and he computed buckling loads by considering the shell to buckle from
this initial nonuniform deformation configuration. He found that the buckling
loads were now as little as 45% of those predicted by classical theory.

16]

Fischer[ has investigated a similar problem and has found reduc-

tion from the Euler buckling loads, due to prebuckling deformations of about

15%. Koiter[17]

has pointed out that the differences in Stein's and Fischer's
work may be explained in part by the fact that Fischer used the condition of
vanishing tangential displacement at the edges while Stein used the condition
of vanishing tangential shear. He also stated that since the conditions of
Fischer represent those used in the classical membrane problem, a reduction
in critical load for Stein's condition of zero tangential shear would likely
be obtained even in the case of the membrane solution if Stein's boundary

[21]

conditions were used. This was shown to be the case by Ohira

22
Hoff and Rehfield.[ ]-

[18]

and by
Recently, Hoff has presented a solution for the axisymmetric
buckling of the free end of a thin cylindrical shell. Subsequently Nachbar

and Hofftlg]

have presented a solution to the same type of problem where
buckling deformations have not been restricted to the axisymmetric case. In

both instances buckling loads well below the Euler loads have been computed.




The objective set forth in this thesis has been to resolve both
experimentally and analytically the effects of prebuckling stresses and
deformations on the buckling of thin cylindrical shells with clamped edges.
It became evident in the early stages of the work that in order to isolate
the edge effects experimentally it would be necessary to fabricate test
specimens which were virtually free of initial geometric imperfections as
well as residual stresses. It furthermore became evident that extreme
caution would have to be exercised in fabricating and fitting edge clamp-
ing plates, as well as in applying loading to the shells, so that all other
possible sources of reduction in buckling loads from the Euler loads would
be minimized. In this manner only, could the reduction in buckling loads
due to edge effects be determined.

In seeking an analytical solution to this buckling problem it became
apparent that the solution must be one which satisfied completely the pre-
scribed experimental boundary conditions. A one-to-one correspondence,
thus, between experimental boundary conditions and those formulated mathe-
matically would have to be satisfied. In this manner the reduction in
buckling load from the Euler load, due to the effects of clamped edges,

would be properly evaluated.




Analytical Prpcedure

The Equilibrium Equations

In order to take into consideration the effects of prebuckling defor-

mations on the buckling of shells, the "two-step'" perturbation technique used

by Stein[lsl

to arrive at the differential equations governing ;he buckling
is employed here. The large deflection solution for the case of a thin
simply supported cylindrical shell subjected to axial and uniform lateral
loading, has been provided by Stein[lsl. The solution for the case of a
shell with clamped edge conditions has been computed and is presented here.

[20]

In both cases the Donnell large deflection equations have been used.
For completeness a brief review of the development of these equations is
presented below.

Referring to Fig. 3 and writing the equations of equilibrium for the

forces acting in the x, y, and radial directions respectively we have:

aN oN
X

. ST 3 A
X + ay 0 ()
aN oN
ox + dy =0 (®)
9 ] N 2 2 2
9x 3y R X 502 y 3y2 Xy 9x3y

(1)




The equilibrium equations for the moments about the x, and y axis

respectively are

MMy
5y T G =0 1O
BHk M
—— ——xl—n = 0}
ax -t oy = (=)
Using the relatioms
3 2 2 3 2. % 2%
Mx= Et (aw*+v8w*) , M = Et (8w+v8w)
12(1-v2) ax? day? Y 12(1-v2) ay2 ax?2
and
Et3 32wk

Moy = T2(1+) axdy

We may write from Eqs. (1)d, (l)e

30 30, a2M 32M M 32M
X 4 = Yy X, X, XY
9 ox 2  0ydx 2 oyox
y dy ax
3 L Lo % Lo % Lo % PN S L%
- Et [(3 wk + v 37w )+ (a ¥ oy LOW ) +2 ( 3w —v 3w )]
12(1-v2)  ay* dy2ax? ax" ax23y? Ix2ay? ax23y2
=D V% w

Substituting in Eq. (1)c, we now have for the set of Donnell equilibrium

equations




aN oN

X L Xy _
ox + 3y 0 (a)
aN oN
5y + Y 0 (b)
N 2 2
DV*wk 4+ =L - (N 3-2-‘1+2N vy Ay, (c)
R X o2 xy 3x3y Y 4.2
From Hook's law we have
Nx = Et (e + ve ) (a)
(1-v2) y
Et
N = (e. + ve)) (b)
y (1_v2) y X
Et
Ney = Ty Txy e)

The nonlinear relationships connecting strains and displacements

are,

ex = 9x +E (B-x—-) ()
E =+ — + = (— (b)

- du*  Jv* + dw* Jw*
xy 9y 9x dx 3y

(c)

10

(2)

(3)

(4)
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The Prebuckling Deformation

In view of the axial symmetry of the prebuckling problem, it is obvious
that both terms on the left hand side of (2)b, are identically zero. Also
u and v are functions of x only.

Substituting expressions for stresses in terms of displacements we have

from (3)a,
- _p . Et du* wwk 1 dw*, .,
Ng=-P= ax TR T2 Gx)7) &

(1-v2)

and from (2)c,

L, . Aeyk . * % .
d-wk + 12pP (1_v2) d-w + 12 ok + 12v du + 6v (dw )2 - 12p(1-w<)

ax*  Et3 dx?2  R2t2 Re2 X pe2 K Et3
(6)
Substituting (5) in (6) we obtain
L 2
dx* dx?  R®R?D
The solution to (7) for the case of clamped edges, i.e.,
w* = du*/dx = 0 at x = + L/2, has been computed and is as follows:
w* = C, sin 0x sinh ¢x + C, cos 6x cosh ¢x + q (8)
where,
R vP _ 1 PL2
Q“Et(P+R) ’ e-ZLV4/§Z+——D

o
0
rapd
ol
—
F g
v
i
%




12

0 sinﬂcosh%- ¢ cos 28 sinh%'I‘-

C, = - 2q 2 2
1 0 sinh ¢L + 2¢ sin-%L-cos %L
¢ sin L cosh $L + 0 cos &L sinh L
C 2 2 2 2 2
2~ 8L oL
0 sinh ¢L + 2¢ sin 5~ cos 5=

differentiating with respect to x, we obtain

*

% =Y sin 0x cosh ¢x + Y, cos 6x sinh ¢x
~and
dZw = Y3 sin 6x sinh ¢x + Y, cos 6x cosh ¢x
dx?
where
Yy = Cl¢ - 029 Yy = Cz¢ + cle
Y3 = Y9 - Y,0 Y4 = Yot + vy

The solution for the axisymmetric prebuckled form when P is greater than

2
PE (the Euler loading),that is when the quantity 4Y3z - 2%— becomes

imaginary, may be expressed as follows

wk = C1 sin 6x sin ¢x + C2 cos Bx cos ¢x + q (9)

where q is unchanged but where,
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[6 cos -%L sin g—L-+ ¢ cos _:62_1.._ sin %]
C,=-gq
1 [8 sinﬂcosﬁ+¢sinﬁl;cos~e—1'
2 2 2 2
{6 cos -gé sin éLL + ¢ sin -g—I—’ cos -gl"-]
C,=-g4g
2 [e sin%l‘-cos%l'-"+¢sing—1'cos -g—l-'-]
and where
1,
_1 2 _1 | p2
= 21 D + 432 b = 21, > 4Y3z

The Buckling Problem

Before beginning the calculation of the buckling loads, a consideration
of the applicable boundary conditions to be satisfied during buckling is in
order. There exist many sets of boundary conditions which are commonly
referred to as simply supported or clamped conditions. Four sets of each
condition have been discussed in Ref. [24] and are presented here as
examples.

Simply support conditions:

= = = yk =
(L wk Mxl N,=V 0
(2) wk = Mxl = le = nyl = 0
= = * = =
3) wk Mxl u nyl 0

x1
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Clamped boundary conditions:

awk
* E I el 4 = * =
1) w T le v 0
Jw* _
2 wk 9x le nyl =0
(3) wk = _?w* = uy* = N = 0
ax yi
@ e

Subscripts 1 indicate incremental stress resultants due to buckling.
The edge conditions used in buckling tests referred to in this thesis are

described by condition (4) in the "clamped boundary conditions” i.e.

In order to arrive at the differential equations governing the buckling
of the shell we add to the prebuckling displacements the infinitesimal buck-
ling displacements u, v, and w. The total displacements, denoted u*, v* and

w* may thus be written as

u* = u + u(x,y)
vk = v(x,y) (10)
whk = w o+ w(x,y)

Expressing the three equilibrium equations in terms of these displace-
ments and dropping terms which are products of the infinitesimal buckling
displacements u, v, and w, and making use of expressions involving pre-

[15]

buckling deformations we arrive at the following equilibrium equations :
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2 o a2 2 - -
ax2 ay2 Ixoy X X 9% X
_ o 02
+ (12\:) g_w 3w _ 0
X ayz
2 2 _ 2 - 2=
(1+v) 3%u +3v+(1v)3v+_].__'c)l+g1v2dw_3_v1
2 Bxay - D 2 P R 9v 2 2 0V
ay“ ) & ’ dx< -
(+v) 3w 3%w  _
o 9x sy 0 (11
2 wn2 2=,
Dv‘*w+%NB+P—aZ"’+vP 2w _ftwdw _dWy =0
y ax2 3y? Byz ax2 *
where
Et au dw 3w vV . W
Ne = .2 Gx Taxox T VGy T R
-V
N __.._.Et [ﬂ..__‘:’._,. v(a_u+g‘_’ﬁ)]

yB = 1-v2 3y R ox dx ox

Admissible expressions for u, v, and w, in keeping with the require-

ments of continuity around the cylinder are

U(x) sin %l

u -
v = V(x) cos %Z (12)
w = W(x) sin %X-
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where J is the number of peripheral waves around the cylinder. J must be
a positive integer greater than 1. J =1, represents a translation of the
shell and J = 0 represents an axisymmetric form.

Substituting the expressions of (12) into Eqs. (11) we obtain the

following set of equations:

QU _ Ly 32y () IV vdW, d v du
dx2 2 R2 Z Rdx Rdx dx ‘dx dx
_ (-v) 32 dw -0
2 dex
2 - 2 - 27
gl;\)z%g—u‘i‘v‘*lz\’d"‘*i‘w*’ 12\) _i_dww
X Rr2 dx R2 dx?
+ (A+v) J dw dw _ 0
2 Rdx dx
4 2 42 4 _ 2 2
p &% _ , D32 d% . DJ W+%NB+Pdw—\)P-J—-W
dx* RZ dx2 R* y dx? R2
2 . 2
+EtJ dwNB_O
R3 dax? ¥
where
No--Et U dvaw -3 W
Mt T VR YR

Fo--Et Iy ,W, dU, dwgw

yB= 2 Rv+i+v(3;+dxdx)]

1-v
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A solution for Eqs. (13) in this paper was obtained by means of the
Galerkin method. The functions U(x),V(x), and W(x), appearing in the
buckling displacements were expanded in sets of trigonometric functions,
each set being selected so that each term of the buckling displacements
satisfied completely the prescribed boundary conditions.

It was assumed that buckling is symmetrical about the center of the
shell so that only one half of the shell needed to be analysed. The
appropriate boundary conditions for the buckling displacements were then
as follows:

at x=0 , u=2o=2X_2¥_,

_L
at x=3 , u=v=ws=

In order for these conditions to be fulfilled it was necessary, in
view of the choice of expressions for the buckling displacements, that

U, V, and W satisfy the following boundary conditionmns.

at x =0 U= = = ==l = (
> dx dx 3
"'L = = =-d—.pl=
at X—z s U v W - 0

k . DTX

U(x) = ngl u  sin =
k -

V(x) = I.v cos S2nzl)mx (14)
n=l n 2%

k -
W(x) ngl v [cos Lil"’l?.‘. + cos P—z—&]
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Here us Vo, wn are unknown coefficients. When these expansions for
U, V, and W are substituted into Eqs. (13), each of the three equations con-
tains the 3k unknown coefficients, Uy Vo W We now multiply each of the
three equations by the appropriate trigonometric functions, one at a time,
integrate over the interval x = 0, to x = £, and setting the result equal
to zero (the Galerkin method), thereby obtain 3k linear homogeneous equations
for the coefficients.

Finally, we must establish the lowest value of P, the loading per unit
length along the edge of the shell, which will permit their coefficient
matrix to have a zero determinant., It is this value of P which gives the
load at which the shell will buckle. Since each choice of J, the number of
peripheral waves around the shell, will have a buckling load associated
with it we must investigate different values of J, to find the lowest of
all possible buckling loads.

In presenting the matrix at hand, that is the matrix of the coefficients
U Vo and wn, denoted herein as matrix A, it is advantageous at this time
to introduce some abbreviations. In addition to employing the Kroniker delta,

denoted by the symbol 6§, the following notation is also used

A
f cosh a,x cos azx sin a3x sin a,x dx =
0

= CCSS al, 32’ a3, a4

The first large capital always refers to a hyperbolic function, either
C denoting cosh or S denoting sinh. The following three letters represent
the trigonometric functions, C denoting cosine and S denoting sine, and the
following four lower case letters represent quantities appearing as shown

above.
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Carrying out the integration procedure described earlier, we then

obtain for the elements of the matrix A, for

0<n <K
0<m <K
- 2 2
Am n ='% {(V LJ - {o1) } Gm n
: 2 R? 22 >
for
K<n < 2K
O<m <K
A = A+ (2n-1)J ) sin(2n-1-2m) n/2  sin(2n-1+2m) n/2
m,n 4R (2n-1-2m) (2n-142m)
for
2K <n < 3K
0 <m<K

A - {1-n)my c
m,n 2R m,n-1
-t
2R m,n

_ 2 oy 12 -
0] [(‘%Ll) +£—1—"%—J—] CSCs ¢, o, {inf,%u} , {%'1}
2R

1 sccs ¢, o, {“'i L,

L

(anl) n)2+ (1-v) J2

- v, [
2 2R?
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an.2 | (1-v) J? nn mr
-y, [+ - ] cscs ¢, 8, {1, )

2 - 2 ;
my, [@AD f A=W) T 0o ) g, B}, (BT
2"t 282 o

. (1=n) Y.q P
- — 3" ssss 4, o, ((BZL T,

(l-n) Y“‘IT

+———  CCSS ¢4, 6,

nmy,
£

nnw mu
SSSS ¢, 6, {1-—} . {T}

nry,
L

nn mu
CCSS ¢, 6, {2— . {T}

for 0<niK

K<mc< 2K

A _ (1+v) In {sin(n-m+1L2)1r + sin(n-hn—l/Z)'n}
m,n 2R (2n-2m+1) (2n+2m-1)

for K<n<2K

K<m< 2K

{-JZ _ (1-&(2@)21:2} 5
R2 842 m,n




for

2K <

n < 3K

K <m < 2K

- J2 {sin (2n-2m-1) n/2 + sin (2n+2m-3) w/Z}

R2y

(2n-2m-1) (2n+2m~-3)

JL {sin (n-m+1/2) =
(2n~-2m+1) (2n+2m-1)

nR2

a-v) J
P57 r !

a-v) J
2 R '3

2 R4

(l—V) J Y4

t 2R

}

(1+v) J (l-n)ny1

+ sin (ntm-1/2)7 }

sscc ¢, o, {(nzl)" },{(2221) 1}

sscc 4, 8, {%14 , {5295%1—1}

{ n-1 w} {SZm-lz w}

ccce ¢, o, - . o

nn 2m-1) =
ccee ¢, 6, {z 1, { 37 }

2R

(1+v) J (l-n)'ny2

cSsC ¢, 0, {(nzl) I3, {‘Zg;l) LB}

2R2

(1+v) J nmy,

2RL

(1+v) J oy,
2R%

Scsc ¢, o, {32i113—} , ({mol) T

nm 2m~-1) =
cssc ¢, 6, fz—} , 1 N 1

nm 2m-1) «w
SCSC ¢, O, {374 , { 5L 1
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for 0<n <K
2k <m < 3K
A = VET n 7 5
m,n 2R(1-v2) m,n
VET o W
4 =20 T 8
2R(1- \)2) (m-1) ,n
ETnny _
--RT%){SSCC ¢, 8, 71, {%9—5} + sscC ¢, 0, 571, (7))

ETnny _
- 5 f(ccee o, 8, BTy, (Bl 4 cecc g, 8, (BN, Rl
2 L L L
£(1-v4)
for K<n < 2K
2k <m < 3K
A _ =ETJ ¢ sin(2m-2n-1) n/2 + sin(2m+2n-3) w/2

(2m-2n-1) (2m+2n—3)\

m,n mR2 (1-v2)

sin w(m-n+1/2) + sin :(m+n—1/2)}
(2m-2n+1) (2m+2n-1)

<+

ETvJy
+ —z— {sscce,0, {LG lL} PR 1J“}+sscc¢ 0, {Qﬁ'—lﬂ} L“"'}}
R{(1-v4)

ETvJy
+ ——2— {cceee, 0, {(2“ 1L} == 1L}+ccccq> 8, {-Q“—lﬂ} {""'}}
R(1-v2)
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for 2K<ni3K

2K<m_<_3K

- b 2 -1)2p2
A -f,@%u% Lip @ L, ID (Dl

mn R2g
2 2.2 ) 4 fen1V22
+ 320 n2n?  Ees 4 Dert P\gz*, T
R2g (1-v?)R2 RY
_ Pn21r2 s
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-1yl 2(5_1Y2,.2 L
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21 2R3 2R2 m,n—l
44 2,22 L 2.2
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223 R22 2R2(1-v2) 2R
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\)ETyln L

{cssce,0, %} , (8L} 4 cssy,0, BT}, {21}
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Experimental Procedure

Specimen Preparation

Thin-walled cylindrical shells were fabricated from an eppoxy resin and
hardener compound using the centrifugal casting technique. This technique
was first discussed in Ref. [11]. The casting facility consisted of an acrylic
drum which rotated on a horizontal axis and is shown in Fig. 4. The drum
was carefully machined and fitted with close fitting end plates which, in
turn, were mounted on brass hubs. A specially selected 1 1/4" dia. ground
and hardened steel shaft was passed through these hubs. The shaft was sup-
ported at each end by high precision ball bearings located on heavy pedestals.
The pedestals were fastened to a concrete base. The assembly was driven by
V belt from a 1/2 H.P. variable speed electric drive.

The acrylic drum had inner dimensions of 18" in length and 8" in diameter.
The wall was 1/2" thick and the end plates 3/4" thick. Six 250 watt infra-red
lamps were used to provide heat and promote curing of the eppoxy. The
drum was rotated at 1200 RPM during shell curing and it was found to be
virtually free of vibration effecting forming of the shells.

In the preparation of a thin cylindrical shell a certain sequence of
steps was carried out. These steps are described in order as follows:

(1) Wipe the inner drum surface with mold release, (Hysol Co. No.
AC4-4367 was used.)

(2) Spin the drum with heat lamps turned on to dry the mold release and

heat up the drum.
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(3) Cast a shell liner in the drum. This is accomplished by mixing the
appropriate amount of Hysol Co. Resin No. R8-2038 with Hysol Hardemer No.
H2-3404 in proper proportions (100 to 11, Resin to Hardener, by weight) and
pouring it into the drum through holes in the end plates. The drum is then
rotated for about 3 hours with the heat lamps turned on while the liner
hardens. The object of the liner is to remove the effect of any small
irregularities that might exist on the inner drum surface. The inner sur-
face of the hardened liner now controls the outer surface of the shell to
be cast.

(4) Wipe the inner liner surface with mold release and once again
rotate the drum with lamps on to dry the mold release.

(5) Mix the necessary amount of Resin and hardener to provide the
required shell thickness and add it to the drum. Rotate the drum, with lamps
on, for about 10 hours to completely cure the shell.

(6) Remove the cured shell. This is accomplished by pushing the shell
and liner assembly out through one end of the disassembled drum. The liner
is then cut free of the shell. The shell is wiped off with trichloroethane
and is ready for testing.

The shells produced in the above manner have a number of features which
are highly desirable for the purpose of testing. These features may be
listed as follows:

(1) Shell geometry is extremely good. Shells produced in this manner ,
with thicknesses of 0.020 in., 0.025 in. and 0.030 in., were found to have
a thickness variation of not more than 0.0005 in. Furthermore, cylindrical

shells of various geometry can be readily produced. Since the length and
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diameter are determined by those of the drum, almost any dimensions can be
achieved by varying drum geometry. Thickness of shell walls is controlled
by selecting the proper amount of liquid resin and hardener.
(2) The customary problem of effecting a proper bond at shell wall
seams 1s eliminated since there are no seams.
{(3) 1In view of the method of shell produciion there are no residual
stresses in the walls and no initial deformations.

(4) Given sufficient time between tests (approximately 2 hours) the
material of the shells undergoes complete elastic recovery from buckling
deformations and they may be (and have been) tested over and over again
with the same buckling loads reached in successive tests.

(5) An important additional feature of these shells is the fact that

‘ the material from which they are made is translucent and bi-refringent. A
photoelastic analysis of the prebuckling, buckling and postbuckling strains
w of the shells is thus made possible. The reflective (photostress) tech-
nique has been used to study the strains.
Still, and high speed photography have both been used to study the

strain distributions. A Budd Co. L.F.Z. large field meter has been employed

in all photoelastic studies.

Testing Apparatus

Shells were tested in a 4 screw Tinnius Olsen Universal Testing Machine
(Fig. 5). Shell end plates were fabricated from 3/4" thick, 10" outer diameter
circular steel plates. These plates were ground on both sides. A 1/2" wide,

5/16" deep, concentric circular groove was first machined in each plate. Next
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a 3/32" wide, 1/16" deep, circular groove, with outer diameter matching
that of the shell was recessed in the center of the first groove. In
addition each end plate was fitted with an O-ring seal, while one plate was
fitted with a pneumatic fitting, so that pressure or vacuum could be applied
to the shell as required.

In preparing a shell for testing the following steps were carried out.

(1) The inner surface was spray painted with reflective aluminum paint.
This step was required so that a photoelastic study of the strains could be
carried out using the photostress technique. The difficulty encountered in
trying to achieve a thin uniform deposit of paint on the surface was overcome
with the aid of a small blower. The blower was used to maintain an air
stream flowing through the shell. An aluminum spray can was used to main-
tain a fog of paint in the air stream, the paint being gradually deposited
on the shell surface. 1In this manner a very satisfactory reflective surface
was achieved.

(2) One end plate was placed on a level table with the grooved side up.

The shell to be tested was then positioned in the groove. Hysol Resin and

hardener, mixed as described above, was poured into the groove. Three equally

spaced holes of 1/4" diameter which had been drilled into the inner groove ‘
allowed the mixture to flow across beneath the shell so that the inner groove
and outer groove were each filled up to the level of the upper plate surface.
The assembly was then left to cure for about 8 hours. Following the curing

the shell was rigidly imbedded in the end plate.
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(3) The assembly was then placed in the testing machine and the end
plate was fastened with cap screws to the levelling plate (see Fig. 5) which
in turn was "spring loaded" against the upper platten of the machine. The
end plate for the lower end of the shell was then placed in position on the
lower platten and the upper platten was lowered until the shell bottom end
entered into the groove of the end plate. The lower groove was then filled
with Resin and hardener and left for 8 hours to cure. The shell, which then
had rigidly built-in ends, was virtually free of initial stresses at the edge.

Now the shell was ready for testing.

Testing Procedure

In order to insure that the end plates of the shell remained parallel
during testing, a levelling plate was used (see Fig. 5). This plate had 3
levelling screws, threaded through it and resting against the upper platten.
The screws were equally spaced on a circle of 11 1/2" diameter. A dial gage
was mounted beside each screw in such a way that it indicated changes in
distance between the end plates at that point. Initially all dial gages
were set to zero. During the testing process the loading was periodically
interrupted so that the gage readings could be compared and the levelling
screws adjusted as required. In this way parallelism of end plates could
be controlled so that the dial gage readings did not differ by more than
0.0005" at buckling.

The loading was also interrupted as required so that photographs of the
shell could be taken through the photostress field meter. A 1" x 1" grid,
which was traced on the shell outer surface with a grease pencil, made
possible the establishment of physical locations of fringe orders and

isoclinic lines, etc., observed in these photographs.
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Photoelastic Study

Prebuckling Deformations

It is known from the theory of photoelasticity that fringe orders obtained
at any point, when conducting isochromatic studies, vary linearly with the
maximum shear stress resultant at the point. Using Eqs. (3)b and (4) to express

Ny in terms of displacements we have

- —Et W du 1 dw,>
Ny-(—l_;z')-[R+v(dx+2(dx) )] (15)
Substituting for du/dx from (5) we obtain
- Et —u2y ¥ _ q_.2y ME
Ny m'zg'[(lv)R (lv)Et (16)
therefore
w
Ny = Et R vP (17)

In view of the fact that Nx and Ny are the principal stresses at any point
of the prebuckled shell, the maximum shear stress resultant at any point is

given by

X __ v _ 1 _1y - Etw
= 57 [PO-1) - =F) (18)

In fig. 6 the ratio of maximum shear stress resultant to maximum shear
stress resultant with edge effects neglected is plotted for a cylindrical shell
subjected to a load equal to 90% of the Fuler buckling load. Figure 7 is a view of

the corresponding isochromatics. These isochromatics are shown in color in Fig.
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8a. An interesting and informative study of the agreement between experimental
and analytical results is thus made possible. Studies indicate good agreement
between theoretical and experimental radial deflections.

The rapid variation in maximum shear stress resultant, predicted by
theory and manifested by this succession of rings, is due to the rapid vari-
ation in tangential (hoop) stress along the shell. The tangential stress
variation, in turn, is due to the rapid variation in radial displacement caused.
by the clamped condition at the shell edges. Since the radial displacement
along the shell is almost of the damped sinusoidal type, the tangential stress
variation is rapidly damped out on moving in from the edge of the shell.

It is the existence of these nonuniform stresses and displacements, observed
in this photoelastic study, that makes the membrane stress model used in classi-
cal linear theory inadequate for describing the actual cylindrical shell at the
incipience of buckling. In a correct analysis of buckling behavior the influ-

ence of these stresses and deformations must be taken into consideration.

Post Buckled Configurations

In almost every test conducted under axial load and without internal
pressure the shell buckled intoe a two tier, six peripheral wave, diamond shape
configuration. Photographs of the 90° isoclinics and the isochromatics for a
typical shell are shown in Figs. 8b, c. These buckles were located almost
midway (+ 1/4") along the shell. The exact periodicity of the buckles, around
the shell, as well as the symmetry observed in the photographs attest to the
caution used in fabricating and testing. With internal pressure the number of
buckles around the shell increased and the tiers tended to move toward one of

the edges.
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Discussion and Conclusions

Analytical Results

(a) Computed Buckling Loads

The analytical computations were carried out on an IBM 7074 digital
computer. The print-out of a typical program (Fort-Pitt) is contained in
Appendix I. Ia order to maximize the size of matrices which this computer
could handle, the matricies were computed and stored, one section at a time,
on a storage tape. Next, with the matrix generating program not required,
and having more storage space available in the computer, the determinants
of the matrices were evaluated. - This largest matrix corresponded to
a 24 term expansion of the displacement functions. All the analytical results
feported herein are based on a 24 term expansion unless stated otherwise.

In order to comserve computer time the usual custom was to first take a
"fast pass" at finding the approximate buckling load. This was done using a
12 term expansion and letting P* vary from approximately 0.05 to 1.0 in
intervals of 0.05. The buckling load to be predicted was known to be in the
neighborhood of the first crossing of the axis (change in sign of the determi-
nant)., The next step was to increase the number of expansion terms to the desired
level < 24, and investigate the location of the lowest zero using finer incre-
ments.

Examining Eq. (8) we note that the quantity 6, which determines the wavelength
of the trigonometric functions appearing in the prebuckling radial displacements,

is independent of shell length. It is therefore to be expected that a proper
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analysis pertaining to shells of greater length, and hence more prebuckling
waves, will require the use of more terms in the trigonometric expansions and
hente larger matrices. The first analysis was therefore carried out on a shell
with ratio of length to radius (L/R) equal to 0.75. This was the shortest
length of shell investigated.

In Fig. 9 the buckling load P* vs. J, the number of peripheral waves, is
presented for this shell, based on a 12 term expansion. We note that the load
reaches a minimum for J = 10. 1In Fig. 10 the computed buckling load vs. internal
pressure parameter is given for the same shell, with J chosen to minimize the
load, and number of terms K, equal to 24.

Analytical results for different shell geometries, with J = 2, are pre-
sented in Figs. 13, 14, 15, and 16. In all cases the buckling loads were found
to undergo small increases with pressure at first and then level off and become
independent of pressure. In Fig. 17 analytical results are given for an unpres-
surized shell. Here we note the significant improvement in agreement between
experimental and analysis as we increase the number of terms in the expansions

from 12 to 24.

(b) Effects of Number of Terms used in Trigonometric Expansions

This investigation was concerned with an unpressurized shell with ratio
of length to radius (L/R) = 3. Here it was found that the effect of varying
J was much more critical (see Fig. 11). Buckling loads have been computed
using 8, 12, and 24 term expansions. It is noted that for J = 2 and J = 4
the values of the predicted buckling loads are equal and sensitivity to the

number of terms appears to be nil for K > 12.
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At J = 6 the results become more sensitive to the number of terms and
for J = 8, up to 10, the buckling loads, based on a 24 term expansion, begin
to drop quite sharply. At J = 12, the load begins to increase again, having -
reached a minimum at J = 10. In Fig. 12 the buckling load vs. internal pressure
parameter is plotted for this shell with values of J = 2 and J = 8. We note
that the load increases rapidly with pressure for J = 8, and eventually begins
to level off at a loading slightly above that obtained for J = 2. This indi-
cates that the discrepancy between analysis and experiment for longer shells
with higher values of J is centered around the region of zero and low internal
pressures only.

On studying the equilibrium equations (Eqs. 13) we note that the parameter
J appears in the first two equations in powers not greater than the second.
In the third equation the maximum power to which it appears is the fourth. This
means that some components which go into making up the matrix elements associated
with the third equation will change by a factor of 10,000/16, as J changes from
2 to 10. This extreme change brought about by alteration of J may have a highly
significant effect on the number of terms required for proper. computation, in
particular for longer shells.

A more thorough investigation of the effect of the number of terms on the

outcome of such computations is given in Appendix 1.

Experimental Results

(a) Experimental Buckling Loads
Shells with ratios of radius to thickness (R/t) ranging from 133 to 200

were tested. The lengths varied from 0.75 to 4.3 radii, the radius in each

case being equal to 4 inches.
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Experimental buckling loads vs. internal pressure parameter, are presented
for various shell geometries in Fig. 10, and Fig. 13 through 18. 1In all experi-
ments the buckling lcads initially increased with interﬁal pressure to about 10%
above that of the unpressurized shell. The loads then levelled off and were no
longer appreciably effected by increased pressure.

(b) Effects of Shell Length and Ratio of Radius to Thickness

In Fig. 22, the buckling load vs. ratio of length to radius for an
unpressurized shell of fixed thickness and radius is presented. The buckling
load was found to be almost independent of length for L/R > 1.5. It drops off
by about 4% as L/R decreases to .75. The loads were found not to be appreciably
affected by changes in R/t within the range of geometrics investigated.

Comparison of Analytical and Experimental Results

In figure 10 the analytical and experimental results are presented for a

pressurized shell with ratio of length to radius equal to 0.75. The computed
and experimental buckling loads for the unpressurized shell agree to within
about 2 1/2%. For the internally pressurized shell the experimental and
analytically predicted buckling loads both rise with pressure, however, the
loads predicted by analysis rise somewhat faster at first. Both curves level

out eventually and are no longer effected by pressure.
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The analytical and experimental results for a lorger unpressurized shell
(L/R=3.0) with different values of J uselin the analysis are presented in Fig. 11.
Here we note that for values of J from 2 up to 6 we have good agreement between
experiment and analysis. For values of J from 7 up to 10 the experiment and
analysis begin to differ gquite rapidly, with the disagreement being a maximum
at J=10. TFor J greater than 10 the analytical results begin to move up again
toward those of experiment. The cause of this disagreement was discussed
earlier.

Comparison of experimental and analytical results for pressurized shells
of various geometrics is presented in figures 13, 14, 15, and 16. The
analysis is restricted here to the case of J=2., It is noted that the agreement
between experiment and analysis is good for zero pressure. While both
analytic and experimental buckling loads increase with internal pressure, the
increase encountered in experiment is considerably greater than that for the

analysis. In both cases the loads level off at higher pressures.

Conclusions

The effect of nonuniform prebuckling deformations brought about by edge
supports, in reducing the buckling loads of clamped thin-walled cylinders
subjected to axial and lateral loading, is confirmed by both the experimental
and analytical results reported herein.

Reductions from the Euler buckling loads of not more than 15Z have been
encountered. It is, therefore, apparent that an explanation for the much
larger discrepencies more commonly encountered in shell testing will have to
be found in the effects of imperfections in the specimens as well as techniques

used for supporting of the edges and application of loading.
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A study of the governing equations and the analytical results indicates
that larger matrices are required for investigating the buckling loads of
longer shells (L/R>1.0), in particular where low interval pressures are
involved.

It should be pointed out at this time that while the analysis carried
out pertains to shells with clamped edges, shells with many other types of
edge conditions may be analysed provided that appropriate sets of functions
are chosen for expansion of the buckling displacements.

The inadequacy of the classical membrane model to describe the shell
in the prebuckling regime has already been discussed. Its inadequacy for
describing the shell at buckling is born out by both the experimental and
analytical results. The effects of large non-uniform prebuckling deformations
must be incorporated into any analysis of the buckling of thin-wall shells
subjected to combinations of axial loading and internal pressure.

The isolation of the effects of these deformations has been made possible
through the preparation of test specimens which are virtually free of imper-
fections as well as the high degree of accuracy used in fitting edge supports.
The caution used in the application of loading has also been a contributing

factor.
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Fig. 3a. Coordinates x, y, z and Displacements u, v, w.

Fig. 3b.

Forces and Moments on Element of Wall (p = Internal
Pressure).
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Fig. 7. View of Isochromatics of a Thin Cylindrical Shell Subjected to Axial
Loading Equal to 90Z of the Classical Buckling Load.
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Fig. 8a. View of Prebuckled Cylindrical
Shell Isochromatics.

Fig. 8b. View of Post-buckled Cylindrical
Shell Isochromatics.

Fig. 8c. View of Post-buckled Cylindrical
Shell 90° Isoclinics.
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APPENDIX A

Investigation of Number of Terms Required in Expansion

Results of the computations carried out in this paper indicate that,
for longer shells subjected to no lateral loading, the analytic results
deviate from experiment when the number of peripheral wave permitted is in
the neighborhood of 10, Since the size of the matrices used herein was
restricted to 72 x 72 one is led to investigate the possible effects of
using larger matrices. In the finite difference methods used in Ref. [15]
and [23] matrices of not less than 150 x 150 were employed when analysing the
behavior of such shells.

As discussed earlier, since prebuckling deformation wavelengths are
independent of shell length it is therefore to be expected that more terms in
the buckling displacement expansions and hence larger matrices are to be
required when analysing larger shells. 1In Fig. 19 the analytically predicted
buckling load vs. ratio of shell length to radius,is plotted for a shell of fixed
R/t, with J held constant at 10. We observed that the deviation from experi-
ment is relatively small for L/R = 0.75 but increases rapidly as L/R increases.
This observation is consistent with the contention that more terms in the
expansions are required for larger shells, especially if a wide range of values
of J are to be investigated.

The determinant vs. loading for J = 8 and J = 10, with different numbers
of terms employed, has been plotted in Figs. 20a , 20b, 21a, and 21b, for a
particular shell geometry with p = 0, In Figs. 20a, and 2la, the determinants

have been scaled to give approximately the same magnitude and are plotted from
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P* = 0,05 up to the first crossing of the axis. In Figs. 20b, and 21b, thése
determinants are plotted with their magnitudes in the same ratio as in the
corresponding previous figures. The scale has been enlarged for clarity and
the value of P* varies between the values associated with the first and
second crossing of the axis.

We note in these figures that for the 1Z term expansion the “dip" below
the axis is much less than for the expansion of 8 terms. This would appear
to indicate that with sufficient terms taken the "dip" would pull completely
above the axis and hence remove the two lowest zeros from the results. The

analysis would then give fair agreement with experiment.



APPENDIX B

Fortran-Pitt Computer Program (Print-out)
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GORMAN DAN BUC PROB 4 &3 TMECHE

«» H MOUNT SCRATCH ON DRIVE 24 WITH RING ON
oo T THIS PROGRAM LOADS SCRATCH TAPE ON DR 264 FOR NEXT PROG,M
. COMPILE FORTRANJEXECUTE FORTRAN,DUMP IF ERROR
SUBROUTINECADD(ARsAl ,BR,BI4CR,C1)
CR DEFINED BUT NOT USED IN AN ARITH STMNT,
C1 DEFINED BUT NDT USED IN AN ARITH STMNT.
SUBROUTINECSUBT{AR,Al4BR,B1,CR,C1)
CR DEFINED BUT NOT USED IN AN ARITH STMNT.
CI DEFINED BUT NOT USED IN AN ARITH STMNT.
SUBROUTINECMULTIAR,ALl,BRyB81,CR,C1) .
CR DEFINED BUT NOT USED IN AN ARITH STMNT.
Cl DEFINED BUT NDT USED IN AN ARITH STMNT.
SUBROUTINECDIVIAR,AI (BR,BIsCR,CI)
CR DEFINED BUYT NOT USED IN AN ARITH STMNT.
Cl DEFINED BUT NDT USED IN AN ARITH STMNT.
SUBROUTINESINH({AR,AI BR,BI)
SUBROUTINECOSH(AR,AI ,BR,B1)
SUBROUTINEEZ(AR,Al,BR,BI)
BR DEFINED BUT NDT USED IN AN ARITH STMNT,
BI DEFINED BUT NOT USED IN AN ARITH STMNT.
SUBROUTINECSCS(A1,A2,A3,A4,EL,C1,S1,VAL)
VAL DEFINED BUT NOT USED IN AN ARITH STMNT.
SUBROUTINESSCS(Al,A2,A3,A%,EL,C1,S1,VAL)
VAL DEFINED BUT NOT USED IN AN ARITH STMNT.
SUBROUTINESSCC(Al1,A2,A3,A4,EL,C1,S1,VAL)
VAL DEFINED BUT NDT USED IN AN ARITH STMNT.
SUBROUTINECSCC(Al,A2,A3,A%0ELoC1,S1,VAL)
VAL DEFINED BUT NOT USED IN AN ARITH STMNT.
‘SUBROUTlNECCCC(Alo‘Zol3oA§oELoCl #S1,VAL)
VAL DEFINED BUT NODT USED IN AN ARITH STMNT.
SUBROUTINESSSS(A1,A2,A3,A&,EL,C1,S1,VAL)
VAL DEFINED BUT NOT USED IN AN ARITH STMNT.
sss MAIN PROGRAM ses
K DEFINED BUT NOT USED IN AN ARITH STMNT.

2000 SUBROUTINE CADD(AR,AlI ¢BRyBICR,CI)
2006 CR=AR+BR
2009 CI=Al+B}
2012 RETURN

0005865028

END )
2033 SUBRDUTINE CSUBT(ARGAIBRsBI,CR,CI)
2039 CR=AR=-BR
2042 Ci=Al1-B1
2045 RETURN
) END
2066 SUBROUTINE CMULT(AR:AI,BR,BI,CR,C1)
2072 Al=AR
2074 A2=Al
2076 B1=8R
2078 B2=81
2080 CR=Al+#B1-A2#B2
2087 CI=Al=B2¢A2081
2094 RETURN
-. END

2120 SUBROUTINE COIV (AR,AI«BRyBI,CR,CI)
2126 Al=AR
2128 A2s=Al

2130 81=8R

265
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. 2132
2134
2141
2144
2148
2151
2161

2198
2204
2208
2218
2226
2230
2234

2259
2265
2269
2271

2273

2277
2283
2287
2291

2314
2320
2323
2327
2331

2351
2357
2361
2376
2391
2395
2617
2421
2443
2447
2469
2477

2508
2514
2518

2545
2549

2576
2580

2607
2611

-WwN

B2=81

D=BR*BR+BleBI

IF (D)} 1,21 67
PRINT 3

FORMAT (12HCDIV BY ZERO0D)

CR={A1=Bl¢A2B2)/D
CI={A2#B1-Al1eB2)/D

END

SUBROUTINE SINH (AR,AlI,BR,B1)

CALL EZ(AR,AI,CR,CI)

CALL EZ(-AR,-Al,DR,DI)

CALL CSUBTI(CRyCI,DR¢DI,BR,BI)

BR=8R/2.

BI=81/2,

RETURN

END

SUBRODUTINE COSHUAR,AI,BR,BI)

CALL EZ(ARyAI,CR,CI)

DR=-AR

DI==Al

CALL EZ(DR,DI,BR,B1)

CALL CADDICR,CIsBR,BI,BR,BI)
BR=BR/2.

BI=Bl/2.

RETURN

END

SUBROUTINE EZ(AR,AIBR,BI)
EAR=EXPEF(AR)

BR=EAR«COSF(AI)

BI=EAR#SINF(Al)

RETURN

END

SUBRDUTINE CSCS(A1,A2,A3,A4,EL,C1l,S1,VAL)
X=A2¢A3-A4
Wl=(CleXeSINF{XeEL))/{{Al®Al)+(XeX))
W2=(S1aAl«COSFIX®EL))/((ALl®ALl)+{XeX))
XzA2+A3¢A4

W3=((CleXeSINF(X®EL))+(S1eAl«COSF(XeEL)))/((ALleALl)+(XaX))

X=A2~-A3-A4&
We=((CleXeSINF(XeEL) )¢(S1leAl*COSF(XeEL)))/((ALleAl)¢(XeX))
X=A2-A3+A4
WS=((CleXeSINFIX®EL))+(S1eALleCOSFIX®EL)))/7((ALlsAl)¢(XeX))
VAL=(W1+H2-W3I+W4-UH5) /4,0

RETURN

END
SUBROUTINE SSCS(Al,A2,A3,A4,EL,C19S1,VAL)

X=A2¢+A3~-A%
Wi={((SleX oSINF(XeEL))+(CleALleCOSF(XeEL)))=( Al))/((ALeALl) ¢ (XaX
1))

X=A24+A3+A% . _

W2={{(SleXeSINFIX#EL) )+(CleAlaCOSF(Xe®EL)))~{( AL))/((ALl=ALl)o(XeX)
1)

X=A2-A3-A4
W3=({{(S1eXeSINF(X*EL) )+ (CleA)l«COSF(X*EL)))~{( AL))/7((ALeAL) ¢ (XaX)
1) :
X=A2-A3+A
Hen((S1leXeSINFIXeEL))+(CleoAleCOSFIX®EL) )= Al))/7CLiALeAdl)oiXeX))




2638
2647

2678
2684
2688
2712
2716
2740
2744
2768
2772
2796
2805

2835
2841
2845
2870
2874
2899
2903
2928
2932
2957
2966

‘ 2996
3002
3006
3028
3032
3054
3058
3080
3084
3106
3115

3145
3151
3155
3179
3183
3207
3211
3235
3239
3263
3272

‘ CYL SHELL
GALLERKIN
3303

VAL=(W1-W2+W3-W&)/(4.)

RETURN

END

SUBROUTINE SSCC(A19A2,A3,A4,EL,C1+S1,VAL)

X=A2+A3-A4
W1=((CleAleSINF(X®EL))-(S1eXeCOSF(X®EL)))/((ALlnAl) ¢+ (X2X))
X=A2+A3+A4

W2=((CleAleSINFIX®EL) )-{S1#XeCOSF(X®EL)))/((AleALl)¢(XeX))
X=A2-A3-A&

W3={(CloALl#SINF(X®EL) )-(S1eXeCOSF(X®EL)))/((ALnALl) ¢ (X2X))
X=A2=-A3+A4

Was((CleAleSINF(XeEL) )-(S1eXeCOSFI{X®EL)))/((ALeAL)¢+(XeX))
VAL=(H1+W2+W3I+W&) /(4.)

RETURN

END

SUBROUTINE CSCC(A14A2,A3,A%¢EL,C14S1.VAL)

X=A2-A3-A4

Wi=({(S1eAleSINF(XeEL) )~ -~{CleXxaCOSF(XeEL) ) +( X))/ ({ALleAl) +(XeX))

X=A2-A3+A4

W2={(S1#Al«SINF(XeEL) )=(CLleXeCOSF{X®EL) )+ ( X))/ (tALeAL) ¢+(XeX))

X=A2+A3-A4

W3={(S1eAl*SINF(X®EL))-(CleXeCOSF(XeEL))*( X))/ ((ALlsAL) ¢(XeX))

X=A2+A3+A4

Wa=({S1=A1eSINF(XeEL) )-(CleXaCOSF(XeEL) )+ X))/7(tALeAL) ¢{XeX))

VAL=(H1+H24W3+HE) /7 (4.)

RETURN

END

SUBROUTINE CCCC(Al1¢A2,A3,A4,EL,C1,S1,VAL)

X=A2-A3¢A4
Wl={(CleXeSINF(XeEL))+(S1eAleCOSF(XeEL)))/((Al=Al)¢+(XeX))
X=A24+A3-A4
W2=((CleXeSINF(XeEL) )¢+ (S1eAleCOSF(X®EL)))/((AleAl)+(XeX))
X=A2-A3-A4
W3=((CleXeSINF(XeEL))+(S1oA1leCOSF(X=EL)))/((ALlmALl)e(XeX))
X=A2+A3+A4
We={(CleXeSINF(XeEL})+(S1eALeCOSFI(X®EL)))/((AleAl]}+(Xe)X))
VAL=(W1+W24W3+W&) /(4 )

RETURN

END

SUBROUTINE SSSS (Al,A2,A3,A%,EL,C1,S1,VAL)

X=A2-A3-A4
Wl=((CleALleSINF(XeEL))-(S1eXeCOSFI(XeEL)))/((ALloALl)+(XeX))
X=A24+A3-A%

W2=((CleALeSINF(X®EL) )~(S1oXeCOSF(X®EL)))/((ALl=AL)o(XeX))
X=A2-A3¢+A4

W3=((CleAl1eSINF(X®EL) )-(S1eX2COSF(XeEL)))/((AleAl)¢(XeX))
X=A2+A3+A% _

We={(CleAleSINF(XeEL) )=-(S1#X2COSF(X®EL)))/((AleAl)¢+({XeX))
VAL=(-W1eW2¢WI-NHE)/{4.)

RETURN

END

8UC PROB
METHOD

DIMENSION A(24,2¢)
K=24
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. 3306
3308
3326
3328
3331
3345
3347
3349
3351
3353
3357
3361
3365
3368

3399
3400
3406
3408
3427
3431
3435
3438
3441
3454
3464
3472

3499
3518
3522
3526
3529
3532
3538
3548
3556
3581
3600
3604
3608
3611
3614
3620
3621
3627

3655
3664
3666
3685
3702
3721
3742
37157
3760
3763

69

REWIND 15
READ 450,PDI1,RADJEIEL,T4R1,P1,PO,DELP, RO-PR DPR,PRO
450 FORMAT(7(F10.291X))
PI=3.141593
D=(Ee(TeTeT))/(12.4(1.~-(POLI=POI)))
341 R=R1 '
FK1=10000.0
1 P=pl
-D0 & M=]1,K
DO & N=1,K
IF{M=-N)39243
2 FN=N

AlM,NI= {{lEL/2.0=1 =100 72.i5ReRJ=-({{{FNePII/ELIS02]e{EL/2.0}})

1 Y/FK
GO TO 4
3 A{MyN)=0.0
4 CONTINUE
WRITE TAPE 1Se((A(I4J)eI=1,K)eJd=]1,K)
DD 5 M=1,K
DO 5 N=1,K
FN=N
FM=M
X1={(l.+POI)eRe((2.#FN)-1.))/(4.)
X2=(2.#FN)=1.=(2,%FM)
X3=(2.#FN)=1.+(2.%FNM)
S A(MyN )=((X1e(SINF(X2eP[®.5))/X2)-(X1o(SINF(X3ePIe®,.5))/X3)
1 )/FK
WRITE TAPE 159((A(I9J)eI=14K),Jd=1,K)
DO 6 M=1,K
DO 6 N=1,K
FN=N
FM=M
X1=2(1.,+P0OI)eRaFNe,5
X2=2(2.2FN)=(2.2#FM)+1.0
X3=2(2.4FN)+(2.2#FM)-1.0
6 A(M (N)=({(X1oSINF(X2aP]#,.5)/X2)+(X1eSINF(X3eP]e,5)/X3)
WRITE TAPE 15,((A(I¢J)oI=]1yK)oJd=1,K)
DO 9 M=]1,K
DO 9 N=1,K
FN=N
IF (M=N) 18,7,18
18 A(M , N)=0.0
GO 7O 9
7 X1=(EL/2.)#*RsR
X2=(EL/2 )% {1.~POL)n.5¢{PI/(2.#EL) )= (PI/(2.%EL))
1 #({(2.2FN)~-1.)ne2)
8 AIM , N)={-X1-X2) /FK
9 CONTINUE
WRITE TAPE 15:((A(I9Jd)eI=19K)od=1yK)
Z={ (EL*EL®4.)/(RAD*T) )= ({SQRTF(1l.~-(POI«PDI)})
Gl=({.25/EL)*(SQRTF(((4.#SQRTF(3.))eZ)¢((PoEL®EL®4,.)/D)))
G2=(.25/EL)*(SQRTF(((4.*SQRTF(3.))sZ)~((PeELOEL®4,)/D)))
Q=( (RAD®*RAD)/(EeT )} )e(PR+((POI=P)/RAD))
G22=G2«EL
633=2.,0G22
CALL SINH(G22,0,C16,DUNMY)

J/FK



75
76
7
78

19

81

CALL COSH(G22,0,C15,DUMNMY) 70
CALL SINH(G33,0, C11,DUMMY)
Q1=(G1leC11)+(2.4G2«SINF(GLleEL)«COSF(Gl«EL))
Al1=((-2.)2Q)e{(GlaSINF{(GLleEL)*L15)~-(G2«COSF(Gl*EL)eC16)})/7(Q1)
A22={(~2.)1#Q) e ((G2«SINFI(G1eEL)*C15)+(GL1«COSF(GleEL)el16))/7(0Q1)
GA1=(AlleG2)-(A22e5G1)

GA2=(A22+G2)+(Al1eG1l)

GA3=(GAl=*G2)-(GA2+Gl)

GA4={GA22G2)+{GAleGl)

S1=C1l6

C1=C1S

DO 81 M=]1,K

DO 81 N=1,K

FN=N

FM=M

IF{R=N+1] 75,7675

1

W1=0.0

GD TO 17

H1l={.5¢(1.-FN)ePl=P0OI)/RAD
IF{M-N)T8,79,78

W2=0.0

GD TO 80

W2={o5«PDIeFNePIa({~-1.))/RAD

X1=((FN-1.)=P])/EL

X2=(FM«+PI)/EL

CALL CSCS(G29GleX19X2,ELsC1leS19X3)

WI==(((GAls({FN=-1.)e({FN=1l.)oPlePl)/(EL®EL))®X3)~((1.~-POI)e
«5eReR#GAL EX3)

X1=(FN-1.)=PI/EL

X2=FM«P1/EL

CALL SSCL(G29X2s6Ll9X1+ELsC1leS19X3)
X4=GA2¢ (({((FN-1.)sPI1)/EL)wea2)

X5={1.-PDI)#.5«ReReGA2

Waz={=-1l.)n({X4&+XS5)eX3

X1=FNePI/EL

X2=FMsPI/EL

CALL CSCS{G2:G1¢X19X2sEL9C1l9eS1eX3)

X6=GAl={((FN=PI/EL )ne2)

X5={1.-P0I)s.5#ReReGA1l

WS={=-X4-X5)=X3 ,

CALL SSCCiG2¢X2¢G1leX19oELsC19S1,X3)
X4=GA2%({(FNePI/EL)na2)

X5=(1l.-PO0[ )= ,5«ReR2GA2

W6={~-X4-X5)#X3

X1l=(FN-1l.)*PI/EL

X2=FMeP1/EL

CALL SSSS{G2¢GLleX1¢X2+EL¢CleS1l¢X3)

WT=((1.-FN)ePI«GA3/EL)*X3

CALL CSCS(G2¢X1eGLleX29ELsClysS1,X3)

WB8={(1l.-FN)esPl«GA4/EL )*X3
X1=FNePI/EL

CALL SSSS(G2:GLleX1eX2+EL,L1,4S1,4X3)

WO=((=-FN)#PI«GA3/EL)=X3

CALL CSCS(G2¢X1s5GleX2+ELsC1leS1¢X3)
W1lO=( (~FN)#PleGA&4/EL) #X3

A(MNI=(W1tH2¢HI+WLLHSHHOCHTHB+WHI+NHI1O y/FK

HRITE TAPE 1S59((A(19d)el=1,K),oJd=1,K)



4219

4223
4227
4230
4233
4246
4259
4287
4292
4297
4320
4328
4338
4348
4355
4360
4370
@377
4385
4395
4402
4407
4417
4424
4432
4442
4458
4468
4484
4489
4499
4513
4523
4537
4556
4575
4577
4581
4585
4588
4591
4594
4599
4615
4616
4618
4623
4631
4641
4646
4656
4674
4678
4688
4694
4704
4720

85

87
86

DO 85 M=1,K

DO 85 N=1,K n
FN=N

FM=M

X1=((2.2FN)~{2.#FM)=(1.))eP]
X2=2{(2.#FN)+({2.2FM}=(3,) ) «P]
W1=(R/RAD)®((SINF(X1/2.)/(X1/7EL))+(SINF{X2/2.)/7(X2/EL)})
X1=(FN-FM¢+.5)pP]

X2={FN+FM=-_,5)eP]
W2=(EL#R/RAD)I={(SINF(X1)/(2.2X1))+(SINF(X2)/(2.2X2)))
X1=(FN-1.)=PI/EL

X2={({2.#FM)-1.)+P1/(2.¢EL)

CALL SSCCI(G2,6G1¢X19X24,ELeC1sS19X3)
W3=(1.-P0l)e,52RaCA3eX3

X1=FNePI/EL
CALL SSCC(G29G1yX1ysX2+ELsC19S14X3)
Wae={1l.-PDI)=.5«R *GA3+#X3

X1=(FN-1.)#PI/EL

CALL CCCC(G2¢G1leX19X24ELsClyS1,yX3)
W5=(l.-POl)}e.5«RaGAL®X3

X1=FNsPI/EL

CALL CCCL(G2:GlsX19X29ELsCleS1¢X3)
W6=(l.-PDl)».S5eReGAG=X3

X1={FN-1.)sPI/EL

CALL CSCS (G2,G1lyX2¢X1,ELyC1l,S14X3)
HT={(1.4P01)s.SeRe (1. -FN)*PI«GAL/EL)*X3
CALL SSCLU(G2¢X19G1l9X24ELsC1lyS1,X3)
WB=((1.4P01) 2,54R#2(1.~FN)eP]e GA2/EL)=X3
X1=FN«PI/EL

CALL CSCS(G2,G1l¢X29X1eELyCLleS1,X3)
W9=(((-1lo)e(1.+PDI)e.,5eReFNeP]eGAL)/EL)®X3
CALL SSCC(G2:X19GleX24ELyC1,4S1,X3)
H10=(((~1.)*{1l+POl)e . 5«ReFNeP[«GA2)/EL)#X3
AlMyN)=(W14W2¢HI+HE+WS+HO+HTEWB+WI+W10) /FK
WRITE TAPE 15, ((AlL+J)sI=14K)eJ=1,K)
FK=FK1

DO 90 M=1,K

DO 90 N=1,K

FN=N

FM=aM

- IF(M-N)87,86,87

IF{M-N~-1)88,86,88
Wl={POI«E2TeFNePI)/(2.%RAD®{1.-(POI=POI)}))
GO YO 89

Hl=0.0

X1=FN«PI/EL

X2=2(FM-1.)#PI/EL

CALL SSCL(G2¢GleX1oX24EL¢C1lsS1l,X3)
X2=FM«*PI/EL

CALL SSCLU(G29GleX19X29ELeC1lyS1l9X4)
W2={(-1.)8(EaTeFNePIeGA3))/((1.-(POI=POI))eEL)
W2=W2e{ X3+X4)

CALL CCCCU(G2sGleX1eX2oEL9CLlyS1,X3)
X2={(FM=-1.)«PI)/EL

CALL CCCC(G296GLleX19X24EL,C1l,S1,X%)
W3=((=1.)eEeTeGAG+FNePI)/((1.~-(POI«POL))eEL)
W3spW3e(X3+X4)



L4724
4736
- 4755
4759
4763
4766
4769
4779
4791
4799
4811
4815
4829
4833
4847
4861
4867
4877
4885
4895
4900
4910
4926
4936
4944
4954
4970
4982
5001
5004
5007
5010
5016
5022
5024
5026
5030
5034
5037
5040
5043
5048
5059
5060
5062
5065
5070
5080
5081
5083
5086
5091
5107
5108
5110
5113
5118

90

921

93
92

94
95
97
96

98
99
101
100

102
103
105
104

A(M ,N)=(WLl+W2+W3)/FK

WRITE TAPE 15,((A{L,4J)eI=14K)J=1,K)
DO 91 M=1,K

DO 91 N=1,K

FN=N

FM=M

X1=(2.2FM)={2.%FN)~1.
Wis{SINF((.5)ePeX1))}/{X1ePI/EL)
X2={2.,8FM)+(2.#FN)~-3,
W2=(SINF{PIe.58X2))/(X2«P]/EL)
X1=FM-FN+.5
W3=(SINF(PIeX1))/(Pl=2.eX1/EL)
X1=FM+FN~-.5
We=(SINFIPI=sX1))/7(PI=22 aX1/EL)
Hil=({{~1.)=E«ToR)/(RAD®(1.~-{POIsPOL)}))
Wi=Wlls(W1+W2+HWIL+HG)
X1=({2.#FN)—=1.)#PI/(2.2EL)
X2=(FM-1.)=PI/EL

CALL SSCLC(G2¢sGlyX19X2+EL,C1sS1,X3)
X2=FMsPI/EL

CALL SSCC(G2,GlsX19X24ELsClyS1,X%)
W2={EeT«POI=ReGA3e(X3+X4))/(1.-(POI=POI))
CALL CCCC(G2,G1loX1pX2,ELsC1l9sS19X3)
X2=(FM-1.)*PI/EL

CALL CCCL(G2,651eX19X2+ELsCl,S1,X%)
W3z (EaT«P0Il=RaGASGe{X3+X4))/(1.-{PO]I=POI1))
AlM 4, Ni={W1l+W2+W3)/FK

WRITE TAPE 15, (A(1,J),1I=1,K)oJd=1,¢K)
G22=2.62 :

Gll1=2.2G1

GL2=G22+EL

CALL COSH (GL2,0.0,C11,DUMMY)

CALL SINH (GL240.0,5S11,DUMMY)
Cll1=Cl1

S111=S81

DO 131 M=]1,K

DO 131 N=1,K

FN=N

FM=M

IF (M=N) 93,92,93

IF(M-N+1194,92,94
Wl={(({FN-1.)*P1)/EL) %24 )eDeELe,5
GO TO 95

W1l=0.0

IF(M=N)97,96,97

IF{M-N-1)98,96,98

W2={(FN*PI/EL)#e4)uDaELe.5

G0 70 99

W2=0.0

IF{M-N)101,100,101
IF(M=-N+1)102,100,102
W3=2,.#ReReDeEL® . 58 { ((FN~-1.)ePI/EL)®»2)
GO TO 103

W3=0,0

IF(M=-N)105.104,105
IF(M~=N-1)106,104,106

We=2 ,eReReDeELe . S5eFNeFNePIePI /(EL®EL)
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5132
5133
5135
5148
5153
5156
5166
5170
5173
5174
5176
5180
5185
5189
5190
5192
5207
5215
5223
5233
5238
5248
5253
5261
5271
5276
5286
5308
5327
5335
5343
5353
5358
5368
5373
5381
5391
5396
5406
5420

5423

5428
5441
5442
5444
5447

5452

5464
5465
5467

5471

5491
5492
5494
5498
5503
5523

106
107

108
109

110
111
113
112

114

115

117
116

118
119
121
120

122
123
124

125
126
128
127

60 TO 107

Wé=0.0
X1={E*T)/((1.~{POI-POI1))*RAD®RAD)
X2=Ds (Reel)

X1=X1+X2

CALL SSCC(G22¢X190.09X25EL9C19S1¢X3)
IF(M-N)110,109,110

W5=X1eEL

GO 70 111

W5=0.0

IF(M-N+1)113,112,113
IFIM-N-1)11441124114

WSA=X1#ELe,5

GO TD 115

H5A=0.0

Yi=( POI«EeTaGAl+#PI)/(RAD=(1.-(POI=POI)))
X1=(FN-1.)+PI/EL

X2=(FM-1.)=+PI/EL

CALL CSCS(G29619X2¢X1ELsCLleS1eX3)
X2=FM=*PI/EL

CALL CSCS{G2:619X2¢X19ELsC1leS1 X&)
X1=FNePI/EL

X2=(FM-1l.)#PI1/EL

CALL CSCS{G2¢G1+4X23X19EL¢C1lyS1eX5)
X2=FMePI/EL

CALL CSCS(G2yG1lsX29X1+EL,C1l9S1eX6)

W6=(((1.-FN)/EL)oY1s(X3+X4))-(((FN /JEL)sY1l)e(X5¢X6))

Y=Ea({-1. )‘POIOT'GAZGPlI(RADG(lo‘(Pﬂl.PUI'"EL)
X1=(FN-1.)«PI/EL

X2=(FM~-1.)ePI/EL

CALL SSCC(G2,X1¢619X29sEL,C1lyS19X3)

X2=FM=PI/EL

CALL SSCC{G2¢X19G1le¢X24ELsClyS1leX%)

X1=FNsPI/EL

" X2=(FM-1.)ePI/EL

CALL SSCCIG2,X1 Gl ¢X2,ELsC14S1,9X5)
X2=FMsPI/EL

CALL SSCC(G2sX19GleX24ELyCLlyS1¢X6)
WT=((FN=1.)eYe(X3+X4) )+ (FNeYe(X5¢X6]})
IF(M=N)117,116,117
IF(M-N+1)118,116,118

WB8=(-Plol { ({FN-1.)2PLl)/EL)»e2)EL8.5
60 TO 119

W8=0.0

IF{M-N)121,120,121
IF(M=-N-1)122,120,122

W9=(-P)e{ (FNePI/EL)2e2)eELe.5

60 7D 123

W9=0,.0

IF(M-N)125,124,125
W10=(EsTeRsReQ#+EL/RAD)-(POl ePeReR*EL)
60 7O 126

W10=0.0 |
IF{M-1-N)128,127,128
IF(M+1=-N)129,127,129 .
H10A=( (EeToReR*Q/RAD)~(POI*PeReR]) ) 2EL®.5
60 Y0 130
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9524
5526
5528
5530
5538
5546
5551
5561
5571
5579
5589
5605
5615
5620
5630
5640
5645
5655
5665
5675
5678
5692
5700
5708
5718
5728

129 W10A=0.0
130 C1=C11

S1=S511

X1={FN-1l.)ePI/EL

X2={FM=-1.)*PI/EL

X2=FMePI/EL

CALL SSCLI(G22¢X1:0.0¢X24EL,C1,S1¢X&)
CALL SSCC(G22¢X1¢56119X2+ELeC1+S1e¢Xb)
X2=({FM~1,)*PI/EL ,
CALL SSCLI(G224X1,G11¢X2,EL,C1l9S1,X5)
X10=(E#TeGAleGA3eP[)/ (4. ¢ELe(1.-(PDI*POI)))
W1SA={FN=-1.)#X10#{X34+X4~-X5-X6)
X1=FN=PI/EL

CALL SSCUI{G22:X1+5119X2,ELeC19519X3)
CALL SSCC(G22¢X140.0¢X2¢EL¢C1¢S19X5)
X2=FM=PI/EL

CALL SSCCUG229X136G11¢X2+ELsC1,S51,X%)
CALL SSCC(G22¢X130.0,X2¢ELyC1l,S1,X5)
W15BaFN#X10#( X34+ X4~X5-X6) #(~1l.)
W15=W15A+W158
X10=E«T«GA2«GA3=PI/(4.*ELe{1.~-(POI=POI)))
X1={FN-1.)«PI/EL

X2={FM-1.)*PI1/EL

CALL CSCS(G22,G119X2sX14ELsC1,S1,X3)
CALL CSCS{0.0,G11¢X2¢X19EL9l1.040.0,4X5)
X2=({PI/EL)*FM

CALL CSCS(G22¢6119X29X14ELsC1¢S1yX%&)
CALL CSCS{0.09611¢X2¢X19EL912040.0,X6)
W16A=(FN=-1.)eX10®{X3+X4-X5-X6)
X1=FNeP1l/EL

CALL CSCS(G22,G11¢X29yX1+EL4C1l,yS1,X4)
CALL CSCS(0.0y6119X2¢X19ELs1c0,0.0,X6)
X2=(FM-1.)sPI/EL

CALL CSCS(G22,6G11¢X2,sX1,ELsC1l4S1yX3)
CALL CSCS( 0.04G119X29sX13ELyle0450.04X5)
W16B=FNeX10# [ X3+X&-X5-X6)
W16=W16A+W168B
X10=E«TaGAlaGA4=PI /(4. 2EL*{(1.~-(POI=POI)}))
X1=(FN-1.)*PI/EL

CALL CSCS{G22,G11¢X24X1+ELsC19S19X3)
CALL CSCS(0.09611¢X29X14EL31.0,0.0.XS5)
X2=FM«PI/EL

CALL CSCS(G22,6G11¢X29¢X1+ELsC1l¢S19X&)
CALL CSCS(0.04G11¢X2¢X1ELy1.090.04X6)
W1TA=X10#(FN-l.)e{X3¢X&+X5+X6)
X1=FN«PI1/EL

CALL CSCS(G22,G1l19X2¢X14ELC1l,S1lyX4%)
CALL CSCS{0.09G1l1eX2¢X1yEL9le0,0.04X6)
X2=(FM-1.)*PI/EL

CALL CSCS(G22,G119¢X2¢X1,EL,C1,51¢X3)
CALL CSCS(0.04G11¢X2sX14EL91090.0,X5)
W17TB=FNeX10#(X3+X&+X5¢+X6)
W1lT=W1TA+W1TB
X10=E«TaGA22GA4*Pl/(4.»(1l.~(PDI«PDI)}))
X1=(FN-1.,)*PI/EL

X2=(FM-1.)+P1/EL

CALL SSCC(G229¢X190.0¢X2,ELsCLleS1eX3)
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CALL SSCL(G22¢X14G1l1yX2,EL¢Cl¢S1,XS5)

X2=FMeP1/EL

CALL SSCL(G22:X190.09X24ELsC1,S1y X&)
CALL SSCC(G22+X19G119X2,EL,C1,S14X6)
W1BA=({FN-1.)oX10e({X3+X4+X5¢X6) JEL
X1=FNePI/EL

X2=({FM-1,}+PI/EL

CALL SSCC(G229X190.0,X24ELyC1leS1,X3)
CALL SSCC(G22:X1¢Gl1l¢X2,EL¢C1,S1,X5)
X2=FMePI/EL

CALL SSCL(G229X190.09X24ELsC1lyS1l9X&)
CALL SSCC(G22¢X14G11,X2,EL,C1,S1,X6)
W1BB=FNeX10s(X3+X4+X54+X6) /JEL
W18=W1B8A+W188B

Ci=C1lii

S1=S111

X10=E=T+R2R=+A11/RAD
X1={FN-1.)*PI/EL

X2=({FM-1.)+P1/EL

CALL SSCU(G2+GlyX1eX29sELeCleS1,X3)
X2=FMsPI/EL

CALL SSCCL(G2¢Gl¢X1eX2sELsC19S1¢X%)
X1=FN=PI/EL B

CALL SSCC(G2,G1sX1eX2¢EL,ClyS1,X6)
X2={FM-1,)sPI/EL

CALL SSCC(G2,GlyX19X29ELsCleS1¢X5)
W1ll=X10#(X3+X4+X5¢X6)
X10=E«Te*Re*ReA22/RAD

CALL CCCCI(G29GloX19X2ELsC1lyS1¢XS5)
X2=FM=PI/EL _

CALL CCCLT1G2:GLleX19X2,EL,C1sS1,X6)
X1l={FN-l.)*PI/EL

CALL CCCC(G2sGlyX19X24ELeCleS1l X&)
X2=(FM-1.)*PI/EL

CALL CCCC(G2¢GleX19X2,ELsC1leS19X3)
W12=2X10#{X3+X4+X5¢X6)
X10=((~1.)=E«TeGA3) /(RAD*(1.-(POI=POI1)))
CALL SSCCI(G29GleX19yX29ELsC19S1¢X3)
X2=FM«PI/EL

CALL SSCC(G29GleX19X2+ELeCLleS1l X&)
X1=FNsPI/EL

X2={FM-1.)*PI/EL

CALL SSCLI(G2¢6GleX1leX2,ELsC1yS1¢X6)
CALL SSCC(G29GleX19X2,ELeC1,S1¢XS5)
H13=X10e({X3+X4+X5+X6) #PO]
X10={(~-1.)*EaTeGA&L)/(RAD*{1.-(POI«POI1)))
CALL CCCC(G2yGly X1 X2¢EL9C19oS1,X5)
X2=FMe*PI/EL

CALL CCCC({G29sGleX19X29ELsC1,yS1oX6)
X1=(FN-1.)#PI/EL

CALL CCCC(G2461l9X19X29ELyC1,S1,9X%)
X2=({FM-1.)+PI/EL

CALL CCCC(G29GLl X1 ¢X2,EL9CLlyS1,X3)
W1le=X10#(X3+X&4+X5+X6) «P0O]

131 A(M 4, N)= (W1+W2+W3+HE+NSH+HSA+NOGNTEHB+HILHLIO0*HWIO0AS

1 W1leW12¢W13+W146+W1S+W164W1T+NH1B)/FK
WRITE TAPE 1Se((A(LI9Jd)el=]1yeK)d=1,K)
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6502 P=P+DELP

6505 IF (P-PO) 151+337,151
6509 337 IF (R-RO) 338,339,338
6512 338 R=R+2.0

6515 GO YO 1

6516 339 IF (PR-PRO) 340,336,340
6519 340 PR=PR+DPR

76

6522 GO TO 341
6523 336 PRINT 4T04POIoRADIECEL,ToRyPR
6534 -END FILE 15
6536 REWIND 15
6539 @70 FORMAT (10({F10.2,1X))
6541 sToOP
END
SUBROUTINE CADD
VARIABLES
NAME LOC. ‘
Al 0000 AR 0000 8l 0000 BR 0000 Cl 0000

STATEMENT NUMBERS
STMNT LOC.

eee NONE eooe

SUBROUTINE csuey
‘VARI ABLES
NAME LOC.

Al 0000 AR 0000 81 0000 BR 0000 C1 0000

STATEMENT NUMBERS
STMNT LOC.

L X N J NDNE oee

SUBROUTINE CMULT

VARIABLES

NAME LOC.

Al 0000 Al 2115 81 0000 Bl 2117 B 0000
AR 0000 A2 2116 B8R 0000 B2 2118 CR 0000

STATEMENT NUMBERS
STMNT LOC.

L N J NDNE oee

SUBROUT INE COIV
VARIABLES

NAME LOC.

I 0000 Al 2192 BI 0000 B1 2194 I 0000
AR 0000 A2 2193 BR 0000 B2 2195 CR 0000

STATEMENT NUMBERS



GORMAN DAN BUC PRDB DET 3 STMECHE 245

s T THIS PROGsM READS SCRATCH TAPE ON DR 24 LOADED BY PROG,M 1
e COMPILE FORTRANJEXECUTE FORTRANy DUMP IF ERRDR
SUBROUTINEDET(AyNy JXyANS)
. LC DEFINED BUT NOT USED IN AN ARITH STMNT.
11 DEFINED BUT NOT USED IN AN ARITH STMNT.
12 DEFINED BUT NDT USED IN AN ARITH STMNT.
MO DEFINED BUT NDT USED IN AN ARITH STMNT,
sas MAIN PROGRAM aee
KK DEFINED BUT NOT USED IN AN ARITH STMNT.
JJJ DEFINED BUT NOT USED IN AN ARITH STMNT.

2000 SUBRDUTINE DET{AsN,JX,ANS)
DIMENSION A{1300)

2006 LC=N

2008 LR=N

2010 23 DO 31 L=1,LR

2014 NO=Le+JXe({L~-1)

2021 3 IF(L-LR)2¢%¢4

TEST FOR POSSIBLE ROW INTERCHANGE

2026 2 BIGA=A(ND)

2030 NPN=0

2032 Il=L+1

2035 DO 25 JO=I1,LR

2040 NP=JO+JXe(L~-1)

2047 IF(ABSF(BIGA)-ABSF(A(NP)))24,25,25

2056 24 BIGA=A(NP)

2058 NPN=NP

2060 25 CONTINUE
‘ TEST FOR POSSIBLE COLUMN INTERCHANGE

2061 NPM=0

2063 12=L+1

2066 D0 52 M=12,LC

2071 NZ = LeJXe(M=]1)

2078 IF(ABSF(BIGA)-ABSF(A(INZ))) S1,52,52
2087 51 NPM=NZ1

2089 BIGA=A(NZ)

2091 52 CONTINUE

2092 IF(NPM) 55,454,55

2095 54 IF(NPN) 27,4,27

INTERCHANGE COLUMNS
2098 55 DO 56 K=L,LC

2103 NQ = Ke(L=-1)=JX
2109 NU = NPM+({K-L)
2115 C = -A(NQ)

2119 A(NQ) = A(NU)
2123 56 A(NU) = C

2126 GO TO 4

INTERCHANGE ROWS
2127 27 DO 26 K=L,LC

2132 NQ = L+JXs(K=1)

2139 C=-A(NQ) |
@::: NU = NPN-(L-1)8JX+JXé(K~1)

2157 ACNQ)=A (NU)

2161 26 A(NU)=C
2164 4 DIVA=1.0/A(NO)



"TEST FOR COMPUTATIONAL SINGULARITY
IF DIVIDE CHECK 6,11

2170
2172
2173
2181
2191
2193
2194

6 SENSE LIGHT 4
16 FORMAT(12HERROR IN ROWI3,21H OF SIMEQ-DIVIDING BY E16.8)

PRINT 16,LsA(NO)

ANS=.99999999E49

RETURN

11 IF(L~LR)12,42,42

MATRIX TRANSFORMATION

2199
2202
2207
2214
2220
2223
2228
2235
2239
2244
2251
2258

12

28
29

MO=L+]1

DO 28 J=MO,LC

NR=L+JXe#(J-1)
AINR}=AINR)}=DIVA

Il1=L+1

DC 31 I=11,LR

NS=J+JX=(L~-1)
FMLTA=A(NS)

DO 31 J=L

o LC

NT=1+JXe(J=-1)
NY=L#JXe(J=-1)
31 A(NT)=AINT)-AINY)=FMLTA

COMPUTE THE DETERMINATE = PI OF A(l,1)

2269
2271
2275
2282
2288

42

ANS=1.0
DO 44 I=1,

NV=1+JXe(I-1)
44 ANS=ANS#A(NV)

RETURN
END

CYyL SHELL PROSB

GALERKIN METHOD

2340
2343
2346
2349
2351
2353
2372
2375
2395
2415
2436
2439
2459
2480
2500
2521
2542
2548
2554
2555
2559

L)

O~NdOVSH WN

333

DIMENSION
K=24
KK=2%K
KKK=3#K
X=0.0
¥=4.0
READ TAPE
JJ=K+1
READ TAPE
READ TAPE
READ TAPE
JJdJ=JJ+K
READ TAPE
READ TAPE
READ TAPE
READ TAPE
READ TAPE

AlT72,72)

15 o((AlI9d)el=19K)¢J=1eK)

15,
15,
15,

15,
15,
15,
15,
15,

{(AlI4J) o I=1,K) o d=JJ,KK)
{(ACIJ) e I=JJsKK) pJd=]1,K)
(LA(L 3J) 0 I=JJdyKK) oJd=JdJeKK)

((A(IoJ)eI=1,K)»d=dJJeKKK)
((ALlT9d) 2 I=dJoKK) pJd=JJJeKKK)
((A(L 3Jd) e I2JJJsKKK)gJ=],K)
((ALT19J) s I2JJJeKKK) 9J=JJeKK)
(CACTL9J) 9 I2dJdJdeKKK) oJd=dJdd e KKK)

CALL DET (A+KKKyKKKyANS)

PRINT 333,

ANS

FORMAT (2E20.8)

X=X+]l,

IF (X-Y) 9410,9



2563 10 REWI
2585 sToP

. END

SUBROUTINE

VARIABLES
NAME LOC.
A 0000
ANS 0000
BIGA 2314
c 2326

ND 15

DET

DIVA 2327
FMLTA 2333
I 2331
I1 2316

STATEMENT NUMBERS

STMNT LOC.

2 2026 6 2172
3 2021 11 2194
4 2164 12 2199
MAIN PROGRAM
VARIABLES
NAME LOC.
A 2568 I T758
ANS 7761 J 7757
STATEMENT NUMBERS
MNT LOC.
1 2375 3 2415
2 2395 & 2439

HIGHEST ADDRESS ASSIGNED 7772

12

JO
JX

JJ
Jdd

2320
2329
2317
0000

16 2181
23 2010
24 2056

1759
1760

5 2459
6 2480

LC
LR

2323
2312
2310
2311

25 2060
26 2151
21 2127

7752
77153

7 2500
8 2521

79

M 2321
MO 2328
N 0000
NOD 2313
28 2214
29 2220
31 2258
KKK 7754
X 7755
9 2353
10 2563

NP
NPM
NPN
NQ

we s

33,
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